Understanding Expressive Transformations in Saxophone Jazz Performances Using Inductive Machine Learning

نویسندگان

  • Rafael Ramirez
  • Amaury Hazan
  • Emilia Gómez
  • Esteban Maestre
چکیده

In this paper, we describe an approach to learning expressive performance rules from monophonic Jazz standards recordings by a skilled saxophonist. We have first developed a melodic transcription system which extracts a set of acoustic features from the recordings producing a melodic representation of the expressive performance played by the musician. We apply machine learning techniques to this representation in order to induce rules of expressive music performance. It turns out that some of the induced rules represent extremely simple principles which are surprisingly general.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intra-note Features Prediction Model for Jazz Saxophone Performance

Expressive performance is an important issue in music which has been studied from different perspectives. In this paper we describe an approach to investigate musical expressive performance based on inductive machine learning. In particular, we focus on the study of variations on intra-note features (e.g. attack) that a saxophone interpreter introduces in order to expressively perform a Jazz st...

متن کامل

Evolving Performance Models by Performance Similarity: Beyond Note-to-note Transformations

This paper focuses on expressive music performance modeling. We induce a population of score-driven performance models using a database of annotated performances extracted from saxophone acoustic recordings of jazz standards. In addition to note-to-note timing transformations that are invariably introduced in human renditions, more extensive alterations that lead to insertions and deletions of ...

متن کامل

Modeling Embellishment, Timing and Energy Expressive Transformations in Jazz Guitar

 Professional musicians manipulate sound properties such as timing, energy, pitch and timbre in order to add expression to their performances. However, there is little quantitative information about how and in which context this manipulation occurs. This is particularly true in Jazz music where learning to play expressively is mostly acquired intuitively. In this paper we describe a machine le...

متن کامل

Jazz Ensemble Expressive Performance Modeling

Computational expressive music performance studies the analysis and characterisation of the deviations that a musician introduces when performing a musical piece. It has been studied in a classical context where timing and dynamic deviations are modeled using machine learning techniques. In jazz music, work has been done previously on the study of ornament prediction in guitar performance, as w...

متن کامل

A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music

Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004